From Oregon State University (Corresponding author in bold)

  1. Nofiani, R.; Philmus, B.; Nindita, Y.; Mahmud, T.Medchemcomm201910, 1517-1530. doi: 10.1039/c9md00162j 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis.
  2. Wells, K. N.; Videau, P.; Philmus, B. FEMS Microbiol. Lett. 2018, Accepted, doi: 10.1093/femsle/fny164. The influence of sigma factors and ribosomal recognition elements on heterologous expression of cyanobacterial gene clusters in Escherichia coli.
  3. Gallegos, D.; Saurí, J.; Cohen, R.; Wan, X.; Videau, P.; Vallota-Eastman, A.; Shaala, L.; Youssef, D.; Williamson, R. T.; Martin, G.; Philmus, B.; Sikora, A.; Ishmael, J.; McPhail, K. J. Nat. Prod. 2018, 81, 1417-1425. doi: 10.1021/acs.jnatprod.8b00117. Jizanpeptins, cyanobacterial protease inhibitors from a Symploca sp. cyanobacterium collected in the Red Sea.
  4. Almabruk, K. H.; Dinh, L. K.; Philmus, B. ACS Chem. Biol. 2018, 13, 1426-1437. doi: 10.1021/acschembio.8b0017 Self-resistance of natural product producers: Past, present and future focusing on self-resistant protein variants.
  5. Videau, P.; Rivers, O. S.; Tom, S. K.; Oshiro, R. T.; Ushijima, B.; Swenson, V. A.; Philmus, B.; Gaylor, M. O.; Cozy, L. M. Molec. Microbiol. 2018, in press, doi: 10.1111/mmi.13974. The hetZ gene indirectly regulates heterocyst development at the level of pattern formation in Anabaena sp. strain PCC 7120.
  6. Yan, Q.; Lopes, L. D.; Shaffer, B. T.; Kidarsa, T. A.; Vining, O.; Philmus, B.; Song, C.; Stockwell, V. O.; Raaijmakers, J. M.; McPhail, K. L.; Andreote, F. D.; Chang, J. H.; Loper, J. E. MBio. 2018; 9, pii: e01845-17. doi: 10.1128/mBio.01845-17. Secondary metabolism and interspecific competition affect accumulation of spontaneous mutants in the GacS-GacA regulatory system in Pseudomonas protegens.
  7. Fenwick, M. K.; Almabruk, K. H.; Ealick, S. E.; Begley, T. P.; Philmus, B. Biochemistry 2017; 56, 3934-3944. Biochemical characterization and structural basis of reactivity and regioselectivity differences between Burkholderia thailandensis and Burkholderia glumae 1,6-didesmethyltoxoflavin N-methyltransferase.
  8. Alanjary, M.; Kronmiller, B.; Adamek, M.; Blin, K.; Weber, T.; Huson, D.; Philmus, B.; Ziemert, N. Nucleic Acids Research, 2017, doi: 10.1093/nar/gkx360. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery.
  9. Yan, Q.; Philmus, B.; Chang, J. H.; Loper, J. E. Elife. 2017 6, pii: e22835. doi: 10.7554/eLife.22835. Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens.
  10. Abugrain, M. E.; Brumsted, C. J.; Osborn, A. R.; Philmus, B.; Mahmud, T. ACS Chem. Biol. 2017, 12, 362-366. A highly promiscuous ß-Ketoacyl-ACP synthase (KAS) III-like protein is involved in pactamycin biosynthesis.
  11. Videau, P.; Wells, K. N.; Singh, A. K.; Gerwick, W. H.; Philmus, B. ACS Synth. Biol., 2016, 5(9), 978-988. Assessment of Anabaena sp. strain PCC 7120 as a heterologous expression host for cyanobacterial natural products: Production of lyngbyatoxin A.
  12. Yan, Q.; Philmus, B.; Hesse, C.; Kohen, M.; Chang, J. H.; Loper, J. E. Front. Microbiol. 2016, 19(7), 497, The rare codon AGA is involved in regulation of pyoluteorin biosynthesis in Pseudomonas protegens Pf-5.
  13. Naurin, S.; Bennett, J.; Videau, P.; Philmus, B.; Soule, T. J. Phycol. 2016, 52(4), 564-571. The response regulator npun_f1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.
  14. Videau, P.; Rivers, O. S.; Ushijima, B.; Oshiro, R. T.; Kim, M. J.; Philmus, B.; Cozy, L. M. Mutation of the murC and murB genes impairs heterocyst differentiation in Anabaena sp. strain PCC 7120. 
  15. Philmus, B.; Shaffer, B. T.; Kidarsa, T. A.; Yan, Q.; Raaijmakers, J. M.; Begley, T. P.; Loper, J. E. ChemBioChem 2015, 16(12), 1782-1790.Investigations into the biosynthesis, regulation and self-resistance of toxoflavin in Pseudomonas protegens Pf-5.

As a postdoctoral researcher

  1. Fenwick, M. K.; Philmus, B.; Begley, T. P.; Ealick, S. E. Biochemistry. 2016, 55(19), 2748-2759. Burkholderia glumae ToxA is a dual specificity methyltransferase that catalyzes the last two steps of toxoflavin biosynthesis.
  2. Xu, H.; Chakrabarty, Y.; Philmus, B.; Mehta, A. P.; Bhandari, D.; Hohmann, H-P.; Begley, T. P. J. Biol Chem. 2016, 291, 23506-23515, Identification of the first riboflavin catabolic gene cluster isolated from Microbacterium maritypicum G10.
  3. Philmus, B.; Decamps, L.; Berteau, O.; Begley, T.P. Biosynthetic versatility and coordinated action of 5’-deoxyadenosyl radicals in deazaflavin biosynthesis. J. Am. Chem. Soc. 2015, 137(16), 5406-5413.
  4. Mehta, A. P.; Abdelwahed, S.; Mahanta, N.; Fedoseyenko, D.; Philmus, B.; Cooper, L.; Liu, Y.; Jhulki, I.; Ealick, S. E.; Begley, T. P. Radical SAM Enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions J. Biol. Chem., 2014, 290, 3980-3986.
  5. Decamps, L.; Philmus, B.; Benjdia, A.; White, R.; Begley, T. P.; Berteau, O. Biosynthesis of F0, precursor of the F420 cofactor, requires a unique two radical-SAM domain enzyme and tyrosine as substrate. J. Am. Chem. Soc., 2012, 134 (44), 18173-18176.
  6. Philmus, B., Abdelwahed, S.; Williams, H. J.; Fenwick, M. K.; Ealick, S. E.; Begley, T. P. Identification of the product of toxoflavin lyase: degradation via a Baeyer-Villiger oxidation. J. Am. Chem. Soc., 2012, 134, 5326-5330.
  7. Lai, R. Y.; Huang, S.; Fenwick, M. K.; Hazra, A.; Zhang, Y.; Rajashankar, K.; Philmus, B.; Kinsland, C.; Sanders, J. M.; Ealick, S. E.; Begley, T. P.Thiamin pyrimidine biosynthesis in Candida albicans : a remarkable reaction between histidine and pyridoxal phosphate. J. Am. Chem. Soc., 2012, 134 (22), 9157-9159.
  8. Fenwick, M. K.; Philmus, B.; Begley, T. P.; Ealick, S. E.Toxoflavin lyase requires a novel 1-His-2-carboxylate facial triad. Biochemistry, 2011, 50, 1091-1100.
  9. Greenwald, J. W.; Greenwald, C. J.; Philmus, B. J.; Begley, T. P.; Gross, D. C. RNA-seq analysis reveals that an ECF σ factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a. PLoS One, 2012, 7, e34804.
  10. Pribat, A.; Blaby, I. K.; Lara-Núñez, A.; Jeanguenin, L.; Fouquet, R.; Frelin, O.; Gregory, J. F.; Philmus, B.; Begley, T. P.; de Crécy-Lagard, V.; Hanson, A. D. A 5-formyltetrahydrofolate cycloligase paralog from all domains of life: comparative genomic and experimental evidence for a cryptic role in thiamin metabolism. Funct. Integr. Genomics, 2011, 11, 467-478.

As a graduate student

  1. Christiansen, G.; Philmus, B.; Hemscheidt, T.; Kurmayer, R. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J. Bacteriol., 2011, 193, 3822-3831.
  2. Philmus, B; Guerrette, J. P.; Hemscheidt, T. K.Substrate specificity and scope of MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster. ACS Chem Biol., 2009, 4, 429-434.
  3. Okumura, H.; Philmus, B.; Portmann, C.; Hemscheidt, T. Homotyrosine containing cyanopeptolins K and L and anabaenopeptins 908 and 915 from Planktothrix agardhii 126/8. J. Nat. Prod. 2009, 72, 172-1766.
  4. Philmus, B.; Christiansen, G.; Yoshida, W.; Hemscheidt, T. Posttranslational modifications during microviridin biosynthesis. ChemBioChem, 2008, 9, 3066-3073.
  5. Christiansen,G.; Molitor, C.; Philmus, B.; Kurmayer, R. Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Molec. Biol. Evol., 2008, 25, 1695 - 1704.